
Real-Time Vessel Monitoring with Open-Source Tools: Leveraging PostgreSQL,
PostGIS, and Python for Geospatial Analysis and Visualisation

FOSS4G:UK

12th November 2024

Rob Burgess

Introduction1

• Offshore energy project

• Facilities include platforms, FPSOs, subsea well clusters, and pipelines.

Floating production storage and offloading

Introduction2

• Collection of energy facilities 25km off the coast of Equatorial Guinea,
spanning 450 sq km.

Subsea Wells

FPSO Offloading Buoy

Platforms

FPSOs

Introduction3

• Mooring Masters oversee vessel mooring and coordination.

• Tracking is crucial for efficient operations and safety.

• Need to monitor several key aspects of vessel movement:

• The approach of vessels to the region and their safe arrival

• The proximity of vessels to platforms and FPSOs, especially given
presence of exclusion zones

• Has a vessel strayed into a restricted zone?

• Has a vessel spent too much time within a zone?

• Has a vessel safely returned to port?

• Is the vessel stationary or on the move?

AIS4

• AIS (Automatic Identification System) for real-time vessel tracking

• Providers include MarineTraffic, Spire, and platform-based systems.

• AIS data typically updates every few minutes (variable).

• Key vessels tracked: Red Snapper, Red Fox, Siem Day

• Mooring Masters can use this data to track vessel movements

Geofences5

• Create geofences around field, facilities and ports

In-Field Geofence – Vessels would be classified as in_field

Geofences6

Platforms Subsea Well Clusters

Vessels would be classified as being within a project geofence

Platform Loading / Unloading Areas

Geofences7

Dynamic Geofences - Vessels would be classified as being within a project geofence

CREATE OR REPLACE FUNCTION public.update_geofence_geometry()
 RETURNS trigger
 LANGUAGE 'plpgsql'
 COST 100
 VOLATILE NOT LEAKPROOF
AS $BODY$
BEGIN

 IF NEW.mmsi = 566983000 THEN
 -- Create 700m buffer
 UPDATE geofences
 SET the_geom = ST_Transform(ST_Buffer(ST_Transform(NEW.the_geom, 32630), 700), 4326)
 WHERE location = 'Noble Venturer';

 END IF;

 RETURN NEW;
END;
$BODY$;

Geofences8

Port Geofences – Vessels would be classified as in_port

Postgres LISTEN/NOTIFY9

• Enables real-time, event driven communication between the database and
external applications.

• LISTEN: we can set up a listener for incoming data

• NOTIFY: send a message to trigger an action in the external application

{

 "vessel_name": "Topaz Commander",

 "mmsi": "538006537",

 "timestamp": "2024-10-10T09:33:30Z",

 "geom": "0101000020E61000005839B4C87…",

 "speed": "0.7"

}

CREATE OR REPLACE FUNCTION public.notify_new_position()
 RETURNS trigger
 LANGUAGE 'plpgsql'
 COST 100
 VOLATILE NOT LEAKPROOF
AS $BODY$
DECLARE
 vname TEXT;
 vtimestamp TEXT;
 vgeom BYTEA;
 vspeed TEXT;
 json_message TEXT;
BEGIN
 SELECT vessel_name INTO vname
 FROM geofence_vessels
 WHERE mmsi = NEW.mmsi AND enabled = true;

 -- Get timestamp, the_geom in WKB format, and speed
 SELECT NEW.timestamp::text, ST_AsEWKB(NEW.the_geom), NEW.attrs ->> 'speed' INTO vtimestamp, vgeom, vspeed;

 IF vname IS NOT NULL THEN
 json_message := json_build_object(
 'vessel_name', vname,
 'mmsi', NEW.mmsi,
 'timestamp', vtimestamp,
 'geom', encode(vgeom, 'hex'),
 'speed', vspeed
)::text;

 PERFORM pg_notify('vessel_event_channel', json_message);
 END IF;
 RETURN NEW;
END;
$BODY$;

1

2

3

Example Payload

Python Listener10

• Create a listener

Setting up the listener

Handling notifications

Process vessel position

def listen_for_geofencing_notifications():

 with get_db_connection() as conn:

 cursor = conn.cursor()

 cursor.execute("LISTEN vessel_event_channel;")

 print("Waiting for notifications on channel 'vessel_event_channel'")

 conn.poll()
 while conn.notifies:
 notify = conn.notifies.pop(0)
 payload = notify.payload

 try:
 data = json.loads(payload)
 vessel_name = data.get('vessel_name')
 mmsi = data.get('mmsi')
 timestamp = data.get('timestamp')
 geom = data.get('geom')
 speed = data.get('speed')
 print(f"Got NOTIFY for MMSI: {mmsi}, Vessel Name: {vessel_name}, Timestamp: {timestamp}, Speed: {speed}")

Got NOTIFY for MMSI: 538006537, Vessel Name: Topaz Commander, Timestamp: 2024-10-10 09:33:30+00, Speed: 0.7

process_vessel_geofencing(session, mmsi, vessel_name, timestamp, geom, speed)

Identifying Geofence Intersections11

• Check for geofence intersections

Initialising Geofence Checks

Checking Geofence Intersections

 geofences = get_geofences(session)

 vessel_within_geofence = False
 geofence_id = None
 geofence_type = None

 # Initialise a list to store geofences that contain the vessel point
 containing_geofences = []

 for idx, geofence_row in geofences.iterrows():
 geofence_geom_raw = geofence_row['the_geom']
 geofence_geom_bytes = bytes(geofence_geom_raw)
 geofence_geom_proc = wkb.loads(geofence_geom_bytes)

 if geofence_geom_proc.contains(Point(ves_geom_proc)):
 area = geofence_geom_proc.area # Calculate the area of the geofence
 containing_geofences.append({
 'id': geofence_row['id'],
 'type': geofence_row['type'],
 'geom': geofence_geom_proc,
 'area': area
 })

Identifying Geofence Intersections12

Select Smallest Geofence

 if containing_geofences:
 # Sort the geofences by area (ascending order)
 containing_geofences.sort(key=lambda x: x['area'])
 # Select the geofence with the smallest area
 selected_geofence = containing_geofences[0]
 vessel_within_geofence = True
 geofence_id = selected_geofence['id']
 geofence_type = selected_geofence['type’]
 …

containing_geofences = [
 {
 'id': 1,
 'type': ‘project',
 'geom': <shapely.geometry.Polygon object at 0x7f8b0c3eafd0>
 'area': 1500.5
 },
 {
 'id': 2,
 'type': ‘in_field',
 'geom': <shapely.geometry.Polygon object at 0x7f8b0c3ea320>
 'area’: 350000
 }

]

Example Data Structure

X

Determining Current State13

• Evaluates vessel state based on location within a geofence and vessel’s speed.

• Returns specific states such as ‘in_port,’ ‘transit_in_field,’ ‘stationary,’ or ‘in_transit’

depending on geofence type and movement.

Geofence Intersection

Check out of range thresholds

In port, and position
>12 hours old

Not in port, and
position >4 hours old

Within project
geofence

Not within geofence

Project AreaOut of range In-Transit Stationary

Separate script: Runs once per hour

Within in_field
geofence

Within in_port
geofence

Transit In-Field StationaryIn Port

No Intersection

Visualising Data14

• See demo

mmsi [pk] timestamp [pk] geofence_id state

538006537 2024-10-04 16:00:00+00 38 project

538006537 2024-10-04 15:50:45+00 577 transit_in_field

538006537 2024-10-04 15:37:38.28+00 53 project

538006537 2024-10-04 15:35:46+00 577 transit_in_field

538006537 2024-10-04 15:30:00+00 43 project

538006537 2024-10-04 15:26:45+00 577 transit_in_field

538006537 2024-10-04 15:08:08.635+00 38 project

538006537 2024-10-04 14:43:40.765+00 577 transit_in_field

538006537 2024-10-04 06:02:02.752+00 24 project

538006537 2024-10-04 01:55:48.291+00 out_of_range

538006537 2024-10-03 21:55:48.291+00 577 stationary

538006537 2024-10-03 21:45:47.086+00 577 transit_in_field

538006537 2024-10-03 15:30:18.806+00 in_transit

538006537 2024-10-03 15:20:07.391+00 12 in_port

538006537 2024-10-03 15:19:09.615+00 in_transit

Conclusions15

• Shown how we can use AIS data in combination with open source tools to
track vessels around offshore energy facilities

• We sourced AIS data from multiple sources, identified vessels of interest,
and created geofences

• Created a workflow to process incoming positions and determine their state

Postgres

LISTEN/NOTIFY

Process

incoming vessel

positions

Identify Geofence

Intersections

Determine Vessel

State

• We can visualise the data we collect using charting / dashboards

Thank you!

Upload to DB

16

17

18

19

	Slide 0: Real-Time Vessel Monitoring with Open-Source Tools: Leveraging PostgreSQL, PostGIS, and Python for Geospatial Analysis and Visualisation
	Slide 1: Introduction
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: AIS
	Slide 5: Geofences
	Slide 6: Geofences
	Slide 7: Geofences
	Slide 8: Geofences
	Slide 9: Postgres LISTEN/NOTIFY
	Slide 10: Python Listener
	Slide 11: Identifying Geofence Intersections
	Slide 12: Identifying Geofence Intersections
	Slide 13: Determining Current State
	Slide 14: Visualising Data
	Slide 15: Conclusions
	Slide 16
	Slide 17
	Slide 18
	Slide 19

