06/09/2023, 22:55 foss4g_talk slides

Moving between geographic data structures for advanced

spatial analysis

Thomas A Statham

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 1/37

06/09/2023, 22:55 foss4g_talk slides

Outline

1. Introduction: data structures

2. Showcase how fundamental data structures are in spatial analysis; yet
they are often overlooked

3. How to move between geographic data structures

4. (Hopefully) make you question what spatial and non-spatial data
structures you are using in your next analysis.

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 2/37

06/09/2023, 22:55 foss4g_talk slides

Introduction
In the most general sense, a data structure is:

any data representation and its associated
operations.

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 3/37

06/09/2023, 22:55 foss4g_talk slides

In geo, there are 3 common data structures:
1. Table

2. Surface
3. Graph

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 4/37

06/09/2023, 22:55 foss4g_talk slides

Geographic data structures should be selected/leveraged as part of
spatial analysis:

To organise and embed spatial relationships as a first
class citizen

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 5/37

06/09/2023, 22:55 foss4g_talk slides

Get directions from Engine Shed to the Pub, the Sidings using a routing

engine: OpenRouteService.

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 6/37

06/09/2023, 22:55 foss4g_talk slides

Before making the query, we first need to grab the coordinates for these
two locations using a Geocoder.

engine shed = ox.geocoder.geocode(query="Engine Shed, Bristol, BS1 6QH") # uses the o
pub = ox.geocoder.geocode(query="The Sidings, Bristol BS1 6PL")

type(pub)

tuple

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 7/37

06/09/2023, 22:55 foss4g_talk slides

We then use OpenRouteService (ORS) Python API, which gives access to
this routing engine API.

coords = [list(engine shed)[::-1], list(pub[::-11)]1 # transform tuple to list and rev

client = ors.Client(key=o0s.environ.get("ORS API")) # Define the client using the ORS
route = client.directions(coordinates=coords, profile="foot-walking")

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 8/37

06/09/2023, 22:55 foss4g_talk slides

Python API returns a dictionary with different information, including a
summary of the distance and duration.

route["routes"][O]["summary"] # returns a dictionary

{'distance': 199.5, 'duration': 143.6}

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 9/37

06/09/2023, 22:55 foss4g_talk slides

Next, we have to decode Google's polyline strings to list to map our route.

decoded linstring = ors.convert.decode polyline(route["routes"][0]["geometry"])["coord
folium coords = [i[::-1] for i in decoded linstring] # reverse list again

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 10/37

06/09/2023, 22:55 foss4g_talk slides

In not many lines of Python, we have traversed through multiple data
structures, data types and algorithms to get our answer: give me
directions from the engine shed to the pub.

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 11/37

06/09/2023, 22:55 foss4g_talk slides

In [7]:

m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=17)
folium.Marker(location=[engine shed[0], engine shed[1]], icon=folium.Icon(color="green
folium.Marker(location=[pub[0], pub[1]], icon=folium.Icon(color="blue",icon="beer", pr
folium.PolyLine(locations=folium coords, color="purple").add to(m)

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 12/37

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright

06/09/2023, 22:55 foss4g_talk slides

Moving between Tables (Polygons, Points) and Surfaces

Say we want to create a simple linear model that predicts crime
aggregated at Uber H3 polygons from Jan 23 to now using some features.
However, the features are not aggregated to the same level of spatial
support. We can use some smart techniques to transfer the values from
one level of spatial support to another.

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 13/37

06/09/2023, 22:55

The bike routes are currently imported as a table, which we will later

foss4g_talk slides

convert to a surface to perform some analysis.

crime = duckdb.sql(
"SELECT Longitude as lon, Latitude as lat "

"FROM read csv_auto('/home/tastatham/site/content/blog/crime/*/*.csv') "

"WHERE lon IS NOT NULL AND lat IS NOT NULL"

).df()
crime.head()

lon lat
0 -0.831066 51.825189
1 0.139935 51.563952
2 -2.516590 51.417444
3 -2.509285 51.409716
4 -2.491420 51.423811

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/

14/37

06/09/2023, 22:55 foss4g_talk slides

| downloaded data for the Avon and Somerset force, but wasn't true! Here
| use the indices of Multiple Deprivation 2019 to clip the spatial points,
which | will use later to predict crime in Bristol.

imd = gpd.read file(
"https://services2.arcgis.com/a4vR8lmmksFixzmB/arcgis/rest/services/Indices Of Dep

)
imd = imd[["LSOA11CD", "LSOA11NM", "IMDSCORE", "geometry"]]
imd.columns = map(str.lower, imd.columns)

m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=11)
imd[["imdscore", "geometry"]].explore(m=m, column="imdscore", cmap="YLOrRd")

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 15/37

06/09/2023, 22:55 foss4g_talk slides

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 16/37

06/09/2023, 22:55 foss4g_talk slides

1 1BIP=% 25

Mtilksham !

1 s
A
Eath and \'ﬁl
NorthiEast &
Somerset ’
[
I}
"y H e A /7
K o~ "
[n3g A
=

== Leaflet (http: js.com) | Data by © Oper p (http:/openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 17/37

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright

06/09/2023, 22:55 foss4g_talk slides

| will also convert the data to British National Grid for support later
analysis.

imd bng = imd.to crs(27700)

crime = gpd.GeoDataFrame(
data=crime,

geometry=gpd.points from xy(crime["lon"], crime["lat"]),
crs=4326,

).to _crs(27700).clip(imd_bng)

m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=11)
crime.explore(m=m)

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 18/37

06/09/2023, 22:55 foss4g_talk slides

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 19/37

foss4g_talk slides

= Leaflet (http: is.com) | Data by © Op 1ap (http:/iop org), under ODbL (http:/f g/copyright).

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 20/37

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright

06/09/2023, 22:55 foss4g_talk slides

WorldPop 2020 Constrained

#lwget https://data.worldpop.org/GIS/Population/Global 2000 2020 Constrained/2020/BSGM
worldpop = rio.open_rasterio("gbr ppp 2020 constrained.tif", masked=False)
Xxmin, ymin, xmax, ymax = imd.total bounds
worldpop = (worldpop
.rio.clip_box(xmin, ymin, xmax, ymax)
.where(worldpop!= worldpop.rio.nodata)

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 21/37

06/09/2023, 22:55 foss4g_talk slides

Which looks something like...

fig, ax = plt.subplots(1l,1, figsize=(6,6), facecolor="white")
worldpop.plot(ax=ax, cmap="Reds", add colorbar=False)
ctx.add basemap(ax=ax, crs=worldpop.rio.crs, source=ctx.providers.CartoDB.Positron)

band = 1, spatial ref=0
51.54 1
51.52 1
=
£ 51.50 T
[=]
=
uﬂl
g 51.48 1
on
L5 ' 3
Z 51.46 Tpr
[+H]
=
2
‘= 51.44
o
51.42 1
51.40 q(C) OpenStreetMap contributors (C) CARTO
L T T T T T T
—2.700 —2.675 —2.650 —2.625 —2.600 —2.575 —2.550 —2.525
longitude [degrees_east]

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 22/37

06/09/2023, 22:55

foss4g_talk slides

Our First feature is population, which we will grab by sampling from
Worldpop at the point level.

coords = crime[["lon",
pop = [x for x in worldpop.sample(coords)]

crime["pop"] = np.array(pop)
crime.head()

"lat"]].values.tolist()

lon lat geometry pop
69659 -2.593910 51.420584 PO'NT23659’32739()?§()5109) 35.656986
45029 -2.596468 51.401671 POINT 23657816209‘?601236) NaN
31255 -2.594939 51.404547 PO'NT?:%ZLZ.'Q%%S) 33.756023
6007 -2.594939 51.404547 PO'NT23657Z172-'999%5) 33.756023
6004 -2.594939 51.404547 POINT (358712985 33 75653

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/

167447.998)

23/37

06/09/2023, 22:55

foss4g_talk slides

Now we create the Uber H3 polygons for Bristol.

h3 = h3fy(imd bng, 9).reset index()

h3.head()

hex_id geometry
o 89195876933FFFF POLYGON ((358991.624 167427.732, 358845.1565"1.
1 89195876127FFFF POLYGON ((356867.933 172888.200, 356721.18;‘rz
2 891958764bbFFFF POLYGON ((356265.765 178199.587, 3561 1916797
3 8919587640bFEEE POLYGON ((355286.137 178102.760, 355140.1074.?
4 89195839287FFFF POLYGON ((359385.229 174629.761, 359239.127OZ

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/

24/37

06/09/2023, 22:55 foss4g_talk slides

Then aggregate and merge the crime data to h3 polygons using a spatial
join.

crime["crime"] = 1
h3 crime sjoined = gpd.sjoin(crime, h3).groupby("hex id")[["crime", "pop"]].sum().rese
h3 crime = pd.merge(h3, h3 crime sjoined, on="hex id", how="outer")

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 25/37

06/09/2023, 22:55 foss4g_talk slides

Now check it out..

= folium.Map(location=[engine shed[0], engine shed[1]], zoom start=11)
h3 crime.explore(m=m, column="crime", cmap="0ranges")

260 j/ 432 519 605 i 691
1'5
j 6-;6{
Eradley Stoke /}éht/e‘

\-.,___ I =

‘ N Ad1T74
. .. =
T . ‘

Mailsea

Bristol - ¢
Airport # o

re A -

. ™ Leaflet (http: letjs,com) | Data by ©Op fap (http:

4T b L
p org), undér OBBL (http://www.openstreetmap.org/copyright).

There's lots of different areal interpolation methods, but the choice of

areal targets plays the biggest role in minimising bias
and uncertainty.

gdf h3 updated = aw. areal weighting(
sources=imd bng,
targets=h3 crime,
extensive=None,
intensive="imdscore",
weights="sum",
sid="1lsoallcd",
tid="hex_ id",
geoms=True,
all geoms=False,

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 26/37

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright

06/09/2023, 22:55 foss4g_talk slides

This spatial feature engineering through map matching allows us to add
new features to statistical models.

h3 all = pd.merge(h3 crime, gdf h3 updated[["hex id", "imdscore"]], on="hex id", how="
model = smf.ols(formula='crime ~ pop + imdscore', data=h3 all).fit()
model.summary ()

OLS Regression Results

Dep. Variable: crime R-squared: 0.544
Model: OLS Adj.R-squared: 0.543
Method: Least Squares F-statistic: 528.3
Date: Wed, 06 Sep 2023 Prob (F-statistic): 1.01e-151
Time: 22:42:59 Log-Likelihood: -4600.6
No. Observations: 888 AIC: 9207.
DF Residuals: 885 BIC: 9222.
DF Model: 2
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept 7.2519 2983 2.431 0.015 1.398 13.106
pop 0.0148 0.000 31.452 0.000 0.014 0.016
imdscore 0.3725 0.100 3.738 0.000 0.177 0.568

Omnibus: 1285.596 Durbin-Watson: 2.029
Prob(Omnibus): 0.000 Jarque-Bera(JB): 369101.988
Skew: 8.086 Prob(JB): 0.00

Kurtosis: 101.561 Cond. No. 7.16e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 7.16e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 27/37

06/09/2023, 22:55 foss4g_talk slides

Moving between Tables and graphs

In this example a user is interested in checking out the cycle routes that
start from within the Bristol boundary.
To do this | grab the Sustran cycle routes

bike routes = gpd.read file("https://maps2.bristol.gov.uk/server2/rest/services/ext/11
bike routes= bike routes[["ROUTE NAME", "DIFFICULTY", "DISTANCE", "geometry"]]

bike routes.columns = map(str.lower, bike routes.columns)

bike routes["distance"] = bike routes[["distance"]].apply(pd.to _numeric, errors="coerc

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 28/37

06/09/2023, 22:55 foss4g_talk slides

and clip out bike routes that completely fall outside of bris local authority

clipped bike routes = gpd.sjoin(bike routes, imd).drop duplicates(subset="route name")
m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=11)
clipped bike routes.explore(m=m)

o |

/
+ \ !
| < A350
- N Corsham "5
- gy, y G =y |
Keynsham—""¢ /_/P___l_
\ s =
T, (! \
~——Bath . |
{ ~Melksham
/
& L
A36 rd
'r\ Bradford on
" H\\._’/-A\ron “‘“h-_,\."
|
! 7
(
1 Trowbridge
A39 \

A366

== Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

One user may be interested in selecting the smallest route, whilst another
user may wish to find the largest route.

This is a pretty simple non-spatial query.

smallest dis = clipped bike routes[clipped bike routes["distance"] == clipped bike rou
largest dis = clipped bike routes[clipped bike routes["distance"] == clipped bike rout

which looks like...

m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=13)
gpd.GeoDataFrame(smallest dis, geometry="geometry", crs=4326).explore(m=m, color="red"
gpd.GeoDataFrame(largest dis, geometry="geometry", crs=4326).explore(m=m, color="blue"

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 29/37

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright

06/09/2023, 22:55 foss4g_talk slides

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 30/37

06/09/2023, 22:55 foss4g_talk slides
— : . .

Queen r"‘ on
AN &

= Leaflet (http: is.com) | Data by © Op 1ap (http:/iop org), under ODbL (http:/f g/copyright).

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 31/37

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright

06/09/2023, 22:55 foss4g_talk slides

An alternative user may be interested in a more complex question. This
user wants to split all of the routes over the course of a weekend:
Saturday and Sunday. So we need to find out how to split the routes over
Saturday and Sunday,

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 32/37

06/09/2023, 22:55 foss4g_talk slides

You could use traditional clustering techniues like k-means clustering,
where k=2, but this requires defining point that represents the LineString.

Instead, we can leverage the power of graph algorithms to partition our
network into two pairs of nodes.

G = momepy.gdf to nx(clipped bike routes.to crs(27700))

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 33/37

06/09/2023, 22:55

foss4g_talk slides

Then use the Kernighan-Lin algorithm to partition the network into two
pairs of nodes...

bisect = nx
bisect

({(347684.
(354211.
(358771.
(360135.
(360470.
(362907.

{(354979.
(358180.
(358764.
(360470.
(361360.
(372232.

088364584,

.community.kernighan lin bisection(G, seed=0)

170781.23213460977),

04278352734, 184715.417715867),

5173283669,
780452416,

172558.91904138785) ,

173164.18407326954),

74972742616, 173229.27782924206),

737672483,

5526282616,
4017600689,
8240964034,

172517.46147224365)},

175881.63394465472),
169196.4730270608060) ,
172484.9220697746) ,

90699713555, 173228.13219716027),

5410734009,
5713307257,

169837.463854736),
165236.69615670637)})

But this returns a set of two dictionaries of the last node along each

LineString.

groupl = pd.DataFrame(data=list(bisect[0]), columns=["lat", "lon"])
group2 = pd.DataFrame(data=list(bisect[1]), columns=["lat", "lon"])
groupl["group"] = "Sunday"

group2["group"] = "Saturday"

bisect_df = pd.concat([groupl, group2], axis=0)

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/

34/37

06/09/2023, 22:55 foss4g_talk slides

Let's plot the routes for Saturday and Sunday

bisect gdf = gpd.GeoDataFrame(
data=bisect df,
geometry=gpd.points from xy(bisect df["lat"], bisect df["lon"]),
crs=27700,
)
clipped bike routes updated = gpd.sjoin nearest(clipped bike routes.drop("index right"

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 35/37

06/09/2023, 22:55 foss4g_talk slides

Well, | wouldn't recommend this to someone without a very high level of
fitness.

m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=11)
clipped bike routes updated.explore(m=m, column="group", cmap=["#FF0000", "#0000ff"])

3—-.T§.
S ristofce
Port.)\\\ N\

F

5 ; Sl
s =) : s atBaidy
& Bristol o Y L
Airport " A & Sunday
¥ ‘ : R
et . ™ Leaflet (http: letjs,com) | Data by ©Op fap (http://op: org), undér OBBL (http://www.openstreetmap.org/copyright).

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 36/37

https://leafletjs.com/
http://openstreetmap.org/
http://www.openstreetmap.org/copyright

06/09/2023, 22:55 foss4g_talk slides

Summary: Geographic data structures matter

There is no right or wrong answer when selecting a data structure. Many
geospatial problems can be solved using different
representations:

Ultimately, as a Geospatial expert, it's up to you how
and when to leverage different data structures.

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 37/37

