06/09/2023, 22:55 foss4g_talk slides

Moving between geographic data structures for advanced

spatial analysis

Thomas A Statham

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 1/37



06/09/2023, 22:55 foss4g_talk slides

Outline

1. Introduction: data structures

2. Showcase how fundamental data structures are in spatial analysis; yet
they are often overlooked

3. How to move between geographic data structures

4. (Hopefully) make you question what spatial and non-spatial data
structures you are using in your next analysis.
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Introduction
In the most general sense, a data structure is:

any data representation and its associated
operations.
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In geo, there are 3 common data structures:
1. Table

2. Surface
3. Graph
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Geographic data structures should be selected/leveraged as part of
spatial analysis:

To organise and embed spatial relationships as a first
class citizen
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Get directions from Engine Shed to the Pub, the Sidings using a routing

engine: OpenRouteService.
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Before making the query, we first need to grab the coordinates for these
two locations using a Geocoder.

engine shed = ox.geocoder.geocode(query="Engine Shed, Bristol, BS1 6QH") # uses the o
pub = ox.geocoder.geocode(query="The Sidings, Bristol BS1 6PL")

type(pub)

tuple
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We then use OpenRouteService (ORS) Python API, which gives access to
this routing engine API.

coords = [list(engine shed)[::-1], list(pub[::-11)]1 # transform tuple to list and rev

client = ors.Client(key=o0s.environ.get("ORS API")) # Define the client using the ORS
route = client.directions(coordinates=coords, profile="foot-walking")
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Python API returns a dictionary with different information, including a
summary of the distance and duration.

route["routes"][O]["summary"] # returns a dictionary

{'distance': 199.5, 'duration': 143.6}
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Next, we have to decode Google's polyline strings to list to map our route.

decoded linstring = ors.convert.decode polyline(route["routes"][0]["geometry"])["coord
folium coords = [i[::-1] for i in decoded linstring] # reverse list again
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In not many lines of Python, we have traversed through multiple data
structures, data types and algorithms to get our answer: give me
directions from the engine shed to the pub.
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In [7]:

m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=17)
folium.Marker(location=[engine shed[0], engine shed[1]], icon=folium.Icon(color="green
folium.Marker(location=[pub[0], pub[1]], icon=folium.Icon(color="blue",icon="beer", pr
folium.PolyLine(locations=folium coords, color="purple").add to(m)
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Moving between Tables (Polygons, Points) and Surfaces

Say we want to create a simple linear model that predicts crime
aggregated at Uber H3 polygons from Jan 23 to now using some features.
However, the features are not aggregated to the same level of spatial
support. We can use some smart techniques to transfer the values from
one level of spatial support to another.
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The bike routes are currently imported as a table, which we will later
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convert to a surface to perform some analysis.

crime = duckdb.sql(
"SELECT Longitude as lon, Latitude as lat "

"FROM read csv_auto('/home/tastatham/site/content/blog/crime/*/*.csv') "

"WHERE lon IS NOT NULL AND lat IS NOT NULL"

).df()
crime.head()

lon lat
0 -0.831066 51.825189
1 0.139935 51.563952
2 -2.516590 51.417444
3 -2.509285 51.409716
4 -2.491420 51.423811
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| downloaded data for the Avon and Somerset force, but wasn't true! Here
| use the indices of Multiple Deprivation 2019 to clip the spatial points,
which | will use later to predict crime in Bristol.

imd = gpd.read file(
"https://services2.arcgis.com/a4vR8lmmksFixzmB/arcgis/rest/services/Indices Of Dep

)
imd = imd[["LSOA11CD", "LSOA11NM", "IMDSCORE", "geometry"]]
imd.columns = map(str.lower, imd.columns)

m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=11)
imd[["imdscore", "geometry"]].explore(m=m, column="imdscore", cmap="YLOrRd")
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== Leaflet (http: js.com) | Data by © Oper p (http:/openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).
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| will also convert the data to British National Grid for support later
analysis.

imd bng = imd.to crs(27700)

crime = gpd.GeoDataFrame(
data=crime,

geometry=gpd.points from xy(crime["lon"], crime["lat"]),
crs=4326,

).to _crs(27700).clip(imd_bng)

m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=11)
crime.explore(m=m)
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= Leaflet (http: is.com) | Data by © Op 1ap (http:/iop org), under ODbL (http:/f g/copyright).
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WorldPop 2020 Constrained

#lwget https://data.worldpop.org/GIS/Population/Global 2000 2020 Constrained/2020/BSGM
worldpop = rio.open_rasterio("gbr ppp 2020 constrained.tif", masked=False)
Xxmin, ymin, xmax, ymax = imd.total bounds
worldpop = (worldpop
.rio.clip_box(xmin, ymin, xmax, ymax)
.where(worldpop!= worldpop.rio.nodata)
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Which looks something like...

fig, ax = plt.subplots(1l,1, figsize=(6,6), facecolor="white")
worldpop.plot(ax=ax, cmap="Reds", add colorbar=False)
ctx.add basemap(ax=ax, crs=worldpop.rio.crs, source=ctx.providers.CartoDB.Positron)
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Our First feature is population, which we will grab by sampling from
Worldpop at the point level.

coords = crime[["lon",
pop = [x for x in worldpop.sample(coords)]

crime["pop"] = np.array(pop)
crime.head()

"lat"]].values.tolist()

lon lat geometry pop
69659 -2.593910 51.420584 PO'NT23659’32739()?§()5109) 35.656986
45029 -2.596468 51.401671 POINT 23657816209‘?601236) NaN
31255 -2.594939 51.404547 PO'NT?:%ZLZ.'Q%%S) 33.756023
6007 -2.594939 51.404547 PO'NT23657Z172-'999%5) 33.756023
6004 -2.594939 51.404547 POINT (358712985 33 75653
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Now we create the Uber H3 polygons for Bristol.

h3 = h3fy(imd bng, 9).reset index()

h3.head()

hex_id geometry
o 89195876933FFFF POLYGON ((358991.624 167427.732, 358845.1565"1.
1 89195876127FFFF POLYGON ((356867.933 172888.200, 356721.18;‘rz
2 891958764bbFFFF POLYGON ((356265.765 178199.587, 3561 1916797
3 8919587640bFEEE POLYGON ((355286.137 178102.760, 355140.1074.?
4 89195839287FFFF POLYGON ((359385.229 174629.761, 359239.127OZ
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Then aggregate and merge the crime data to h3 polygons using a spatial
join.

crime["crime"] = 1
h3 crime sjoined = gpd.sjoin(crime, h3).groupby("hex id")[["crime", "pop"]].sum().rese
h3 crime = pd.merge(h3, h3 crime sjoined, on="hex id", how="outer")
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Now check it out..

= folium.Map(location=[engine shed[0], engine shed[1]], zoom start=11)
h3 crime.explore(m=m, column="crime", cmap="0ranges")

260 j/ 432 519 605 i 691
1'5
j 6-;6{
Eradley Stoke /}éht/e‘

\-.,___ I =

‘ N Ad1T74
. .. =
T . ‘

Mailsea

Bristol - ¢
Airport # o

re A -

. ™ Leaflet (http: letjs,com) | Data by ©Op fap (http:

4T b L
p org), undér OBBL (http://www.openstreetmap.org/copyright).

There's lots of different areal interpolation methods, but the choice of

areal targets plays the biggest role in minimising bias
and uncertainty.

gdf h3 updated = aw. areal weighting(
sources=imd bng,
targets=h3 crime,
extensive=None,
intensive="imdscore",
weights="sum",
sid="1lsoallcd",
tid="hex_ id",
geoms=True,
all geoms=False,
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This spatial feature engineering through map matching allows us to add
new features to statistical models.

h3 all = pd.merge(h3 crime, gdf h3 updated[["hex id", "imdscore"]], on="hex id", how="
model = smf.ols(formula='crime ~ pop + imdscore', data=h3 all).fit()
model.summary ()

OLS Regression Results

Dep. Variable: crime R-squared: 0.544
Model: OLS  Adj.R-squared: 0.543
Method: Least Squares F-statistic: 528.3
Date: Wed, 06 Sep 2023 Prob (F-statistic): 1.01e-151
Time: 22:42:59 Log-Likelihood: -4600.6
No. Observations: 888 AIC: 9207.
DF Residuals: 885 BIC: 9222.
DF Model: 2
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

Intercept  7.2519 2983 2.431 0.015 1.398 13.106
pop 0.0148 0.000 31.452 0.000 0.014 0.016
imdscore  0.3725 0.100 3.738 0.000 0.177 0.568

Omnibus: 1285.596 Durbin-Watson: 2.029
Prob(Omnibus): 0.000 Jarque-Bera(JB): 369101.988
Skew: 8.086 Prob(JB): 0.00

Kurtosis:  101.561 Cond. No. 7.16e+03

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 7.16e+03. This might indicate that there are

strong multicollinearity or other numerical problems.
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Moving between Tables and graphs

In this example a user is interested in checking out the cycle routes that
start from within the Bristol boundary.
To do this | grab the Sustran cycle routes

bike routes = gpd.read file("https://maps2.bristol.gov.uk/server2/rest/services/ext/11
bike routes= bike routes[["ROUTE NAME", "DIFFICULTY", "DISTANCE", "geometry"]]

bike routes.columns = map(str.lower, bike routes.columns)

bike routes["distance"] = bike routes[["distance"]].apply(pd.to _numeric, errors="coerc
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and clip out bike routes that completely fall outside of bris local authority

clipped bike routes = gpd.sjoin(bike routes, imd).drop duplicates(subset="route name")
m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=11)
clipped bike routes.explore(m=m)
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== Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

One user may be interested in selecting the smallest route, whilst another
user may wish to find the largest route.

This is a pretty simple non-spatial query.

smallest dis = clipped bike routes[clipped bike routes["distance"] == clipped bike rou
largest dis = clipped bike routes[clipped bike routes["distance"] == clipped bike rout

which looks like...

m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=13)
gpd.GeoDataFrame(smallest dis, geometry="geometry", crs=4326).explore(m=m, color="red"
gpd.GeoDataFrame(largest dis, geometry="geometry", crs=4326).explore(m=m, color="blue"
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= Leaflet (http: is.com) | Data by © Op 1ap (http:/iop org), under ODbL (http:/f g/copyright).
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An alternative user may be interested in a more complex question. This
user wants to split all of the routes over the course of a weekend:
Saturday and Sunday. So we need to find out how to split the routes over
Saturday and Sunday,

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 32/37
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You could use traditional clustering techniues like k-means clustering,
where k=2, but this requires defining point that represents the LineString.

Instead, we can leverage the power of graph algorithms to partition our
network into two pairs of nodes.

G = momepy.gdf to nx(clipped bike routes.to crs(27700))

file:///home/tastatham/site/content/blog/foss4g_talk.slides.html#/ 33/37



06/09/2023, 22:55

foss4g_talk slides

Then use the Kernighan-Lin algorithm to partition the network into two
pairs of nodes...

bisect = nx
bisect

({(347684.
(354211.
(358771.
(360135.
(360470.
(362907.

{(354979.
(358180.
(358764.
(360470.
(361360.
(372232.

088364584,

.community.kernighan lin bisection(G, seed=0)

170781.23213460977),

04278352734, 184715.417715867),

5173283669,
780452416,

172558.91904138785) ,

173164.18407326954),

74972742616, 173229.27782924206),

737672483,

5526282616,
4017600689,
8240964034,

172517.46147224365)},

175881.63394465472),
169196.4730270608060) ,
172484.9220697746) ,

90699713555, 173228.13219716027),

5410734009,
5713307257,

169837.463854736),
165236.69615670637)})

But this returns a set of two dictionaries of the last node along each

LineString.

groupl = pd.DataFrame(data=list(bisect[0]), columns=["lat", "lon"])
group2 = pd.DataFrame(data=list(bisect[1]), columns=["lat", "lon"])
groupl["group"] = "Sunday"

group2["group"] = "Saturday"

bisect_df = pd.concat([groupl, group2], axis=0)
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Let's plot the routes for Saturday and Sunday

bisect gdf = gpd.GeoDataFrame(
data=bisect df,
geometry=gpd.points from xy(bisect df["lat"], bisect df["lon"]),
crs=27700,
)
clipped bike routes updated = gpd.sjoin nearest(clipped bike routes.drop("index right"
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Well, | wouldn't recommend this to someone without a very high level of
fitness.

m = folium.Map(location=[engine shed[0], engine shed[1]], zoom start=11)
clipped bike routes updated.explore(m=m, column="group", cmap=["#FF0000", "#0000ff"])
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Summary: Geographic data structures matter

There is no right or wrong answer when selecting a data structure. Many
geospatial problems can be solved using different
representations:

Ultimately, as a Geospatial expert, it's up to you how
and when to leverage different data structures.
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