Outline

• Motivation
• New software for variogram calculation
• Existing software for model fitting
• Conclusions
Motivation
Geostatistics

- Tobler’s first law of geography:
 “everything is related to everything else, but near things are more related than distant things”
- Standard approach:
 1. Examine how correlation varies with distance, via an empirical variogram
 2. Fit a model, via an inferred spatial covariance matrix
 3. Predict values at new locations, via kriging
Large datasets

- Datasets are growing with increasing computing power
- Geostatistics’ computational costs grow faster than dataset size n
 - # of inter-datapoint distances/covariance matrix entries: $O(n^2)$
 - # of operations for covariance matrix decomposition: $O(n^3)$

https://wiki.openstreetmap.org/wiki/Stats
Variogram calculation
Sampling risks

• Excessive spatial span:
 – Covariate variation dominates variability
 – Spatially correlated effect unconstrained
 – Inefficiency from low intercorrelation

• Insufficient spatial span:
 – Correlation dominates variability
 – Covariate dependence unconstrained
 – Inefficiency from high intercorrelation
Efficient sampling

• Estimate maximum significant correlation length λ
• Divide datapoints into $2\lambda \times 2\lambda$ boxes with overlaps λ
 – All significant pair-interactions within some box
• From each box, sample # pairs \propto # datapoints
 – First approx. to Reilly and Gelman (2012)
• # of comparisons $O[A\lambda^2\rho \rho_{\min}]$ rather than $O[(A\rho)^2]$
 (for Area A, typical and low datapoint density ρ, ρ_{\min})
Variogram implementation

- Development version implemented in R
- Euclidean and WGS84 distances supported
- Options for subsampling:
 - Complete coverage
 - Complete network
- Options for estimator:
 - Matheron (1962)'s
 - Cressie & Hawkins (1980)'s
 - Genton (1998)'s
- Applied to 78,878-datapoint Punjab groundwater dataset
 - ~ 1 hour to identify ~ 1.6 million interacting pairs
Model fitting
Published approaches

• Take advantage of low correlation at distance:
 – Tapered covariance matrices (e.g. with R package spaMM)
 – Nearest-Neighbour Gaussian Process (R package spNNGP)

• Take advantage of high correlation in proximity:
 – Fixed Rank Kriging (R package FRK)
 – Predictive Process (R package spBayes)

• Both: Multi-Resolution Approximation (Julia package MRA_JASA, Python pyMRA)

• Solve equivalent problem with more sparsity:
 – Lattice Kriging (R package LatticeKrig)
 – INLA for equivalent SPDE (R package R-INLA)

• Few direct comparisons between different approaches
Comparison method

- Simulate datapoints at $n = 50, 100, \ldots, 3200$ locations in the unit square
 - Locations: mixture of three Gaussian clusters and a uniform distribution
 - Covariates: one uncorrelated, one spatially correlated
 - Errors: exponential correlation structure with nugget
- Estimate coefficients with linear regression lm, as control, &:
 - Dense covariance matrix, using spaMM
 - Sparse, spherically tapered covariance matrix, using spaMM
 - Nearest-Neighbours Gaussian Process, using spNNGP
- Specify correlation structure:
 - As part of the model fit
 - Using the empirical semivariogram
Comparison results
Application

• Consider monsoonal groundwater change rates in Punjab, Pakistan, 1979 – 2009
 – 41,852 records at 2,967 sites
 – Low residual inter-year temporal correlation
 – Spatially correlated covariates and errors

• Fit a linear model with a spatially correlated error term
 – Using spaMM, with a tapered covariance matrix specified from the variogram
Conclusions
Conclusions

- Computationally efficient methods key to large-dataset geostatistics
- Variety of free, open-source software available, especially in R
- New tool promising for empirical variogram calculation
- For model fitting and prediction, spNNGP’s the best option when applicable
Future work

• Rewrite variogram calculation as production code
 — Which language would be most useful?
• Test more existing methods
 — Which dataset complications are most important to model?
• Extend tests to prediction
 — Against which non-statistical methods would tests be most useful?