

HOST INSTITUTIONS FUNDED B Maynooth UCD University Skillnet

Randomly generated spatial datasets: A Python approach

Paddy Gorry & Peter Mooney FOSS4G UK Local 2023

Centre for Research Training

Access to data & teaching

- Openly available spatial datasets
 (OpenStreetMap)
- Important in the teaching of spatial data analysis (Jarvis, 2011):
 - Importing/exporting datasets
 - Data **cleaning**
 - Data visualization
 - Data **analysis** (spatial or otherwise)
- Generating custom datasets is useful for teaching any (or all) of the above topics

Introducing...RADIAN

- **RA**n**D**om spat**I**al d**A**ta ge**n**erator
 - Created as part of my MSc thesis (supervised by Peter Mooney)
- Produce synthetic geographic datasets that:
 - Appear "realistic"
 - Available in GeoJSON & SQL formats
 - Can be generated **quickly**!
- Exercises that are **interactive**, **interesting**, and **relevant** help encourage student engagement (Donker et al, 2022)

Related Work: Synthetic Spatial Data

Is this Real? Generating Synthetic Data that Looks Real

Miro Mannino, Azza Abouzied New York University Abu Dhabi, UAE {miro.mannino, azza}@nyu.edu

- The **GRD** package in SPSS and R allows generation of synthetic datasets (Calderini, 2019)
- Mannino & Abouzied described a software to generate "real-looking synthetic data" by specifying the properties of the dataset (Mannino, 2019)
- These tools can't generate spatial datasets!

QGIS

- Quantum GIS
 - An Open-Source GIS visualization and **analysis** tool
 - Can generate random points in polygons and other shapes

Vect <u>o</u> r <u>R</u> aster <u>D</u> atabase <u>W</u> eb <u>N</u>	<u>M</u> esh Pro <u>c</u> essing <u>H</u> elp	
Geoprocessing Tools	🚜 👢 🛄 🕓 🈂 🛛 🔣 - 🗐 - 🌄 - I	4
Geometry Tools		abe
Analysis Tools		0
<u>R</u> esearch Tools	III Create Grid	
Data Management Tools	🔚 Extract Layer Extent	E
Di S ct ²⁸	Random Points in Extent	L
	🕍 Random Points in Polygons	re tic
ieston	🕅 Random Points on Lines	-
9 Park Go	Select by Location	L
ields	Random Points in Layer Bounds	L
The second	🖙 Random Points Inside Polygons	L
	Random Selection	Ľ
	Random Selection Within Subsets	
80	Regular Points	e
	Iniversity/Presentations	1G

QGIS & Random Point Generation

Parameters Log	Random points in
Input polygon layer	polygons
₽ 2579 [EPSG:4326] Selected features only	This algorithm creates a point layer, with points placed randomly in the polygons of the <i>Input polygon layer</i> .
Number of points for each feature	• For each feature in the <i>Input</i>
400	polygon layer, the algorithm attempts to add the specified
Minimum distance between points [optional]	feature to the output layer.
0.000000 💿 🗘 🖶	 A Minimum distance between points and a Global minimum
Advanced Parameters	distance between points can be specified.
Global minimum distance between points [optional]	A point will not be added if there is an already generated point
0.000000 🛛 🗶 degrees 🔥	within this (Euclidean) distance
Maximum number of search attempts (for Min. dist. > 0) [optional]	With Minimum distance between
10 🚳 🗘 🤤	<i>points</i> , only points in the same polygon feature are considered,
Random seed [optional]	while for <i>Global minimum</i> distance between points all
Not set	previously generated points are
✓ Include polygon attributes	minimum distance between points is set equal to or larger
Den dem meiste in actueren 🔍	than the (local) <i>Minimum</i>
0%	Cancel
Advanced T Run as Batch Process	Run Close Help

Generates a set of **uniformly distributed** points within a polygon
These points are given a single **primary key** attribute

- **Pros:** Speed, ease-of-use, variety of formats for export & visualization
- **Cons:** Points distributed **unrealistically,** no options for any additional **metadata**

Random Points in Polygons.

Generating points "realistically"

What makes geographic data look "real"?

Both datasets contain 409 points: one is real, one fake

26/04/2023

Packages

• Some of the main Python packages used for this project:

• Random, numpy, Matplotlib, etc.

Random points in a Polygon

- Given some region described by a **polygon**
- Determine the **bounding box:**
 - The max/min latitude and longitude (x & y) values that contains the polygon
- Generate a 2D point using the max/min x & y values as the parameters
- Remove the points which lie within the bounding box but outside of the desired polygon

def point_in_poly(poly): minX, minY, maxX, maxY = poly.bounds new_point = shapely.Point([random.uniform(minX, maxX), random.uniform(minY, maxY)]) return new_point

A closer look at "fake" data

Without context or real data for comparison how can we tell this data is fake?

How popular is a takeaway in the river?

A closer look at "fake" data

- **Context** is important in identifying if data appears realistic
- The uniform distribution here could in fact be realistic depending on what data it is emulating
- This will also be influenced by the **type of region** within which the points are being generated (country vs. city)

A radial distribution

- Note the difference in **density** as you travel further from the centre
- We generate **an equal number** of points in each buffer region
- The smaller central regions (A) will have a much higher density than the outer regions (E)
- This results in a "radial" distribution that mimics real geographic data

Voronoi Polygons

- The partitioning of a plane with **n points** into convex polygons such that:
 - Each polygon contains exactly one generating point
 - Every point in a given polygon is closer to its generating point than to any other.
 - Burrough et al, 2015

Voronoi-based Buffers

- Circular buffers are too uniform – hence we use
 Voronoi-based buffers
- K-Means clustering is used to create a set of centroids to create Voronoi regions
- These regions are classed by their distance to the centroid of the source polygon

Primary & Secondary Generation

- Generation can be split into **primary** and **secondary**
 - Primary occurring at the level of the **source polygon** (moving or original centroid)
 - Secondary occurring at the local-level in secondary Voronoi regions (equal or variable area

The **ratio** between primary and secondary points is set in the parameters

Incorporating additional metadata to points

"default_vars" : true,

"rand_var_types" : ["ts", "ts", "int"], "rand_var_names" : ["opening_time", "closing_time", "phone_number"],

"rand_var_params" : [["2022-01-01 11:00:00", "2022-01-01 15:00:00"],["2022-01-01 22:00:00", "2022-01-02 03:00:00"],[1000000000,999999999]]

"extra_var":false,
"extra_var_types" : ["str", "str"],
"extra_var_name":["var_string", "string_equal_dist"],
"extra_var_file":["restaurant.csv", "restaurant_no_weights.csv"],

Muith	📄 🔁 🛙 🕄 👘 🔅 🖄) 💮 👯 🔻 🔧 🔟
1 - C	Feature	Value
10000	osm_comparison_radian [1	2]
Stepps	▼ name	Pret A Manger
	(Derived)	
	(Actions)	
	PKID	215
	opening_time	01/01/2022 11:50:03
	closing_time	02/01/2022 02:49:14
arthunlock	phone_number	9902202285
	name	Pret A Manger
	▶ name	Domino's
Blairtummo-K	name	Papa John's
	📜 🕨 name	Subway
Part Coriochill	Name 🕨 🕨	Pret A Manger
Bortok Springhili	🔊 🕨 name	McDonald's
	name 🕨 🖌 🖌	Wasabi
andyhills Bailosto	n 📄 🕨 name	Nando's
	→ name	Franco Manca
Mount Vernon Broomho	Mod Current Layer	

	А	В
1	string	weight
2	Pret A Manger	234
3	Subway	169
4	McDonald's	167
5	KFC	112
6	Nando's	108
7	Greggs	106
8	Domino's	95
9	PizzaExpress	93
10	itsu	58

- RADIAN is controlled by a .JSON **parameter file**
- This allows for generation of **additional variables**:
 - Random strings, integers, and timestamps
 - Custom variables given a list of strings and a set of weights
- Datasets can be tailored to the topic being taught or assessed

RADIAN Example

Feature	Value	
osm_comparison_radia	n [7]	
▼ name	Pret A Manger	
(Derived)		
(Actions)		
PKID	196	
opening_time	01/01/2022 11:49:31 (GMT St	
closing_time	02/01/2022 01:24:04 (GMT St	
phone_number	1054429397	
name	Pret A Manger	
▶ name	Domino's	
▶ name	Papa John's	
▶ name	Perfect Fried Chicken	

An example of some metadata attached to the points

A synthetic dataset of 400 Fast-Food restaurants in Glasgow

Use cases for RADIAN

- Generate unseen data for
 CS621: Spatial Databases
- Allow students to generate their own data for **assignments and projects**
- Used to generate examples for teaching materials to increase engagement
- **ChatGPT** has shown the utility of being able to generate unseen synthetic data quickly

My CS621 Geospatial Story

Future of RADIAN

Current work

- Use of raster grids and triangulation – more efficient generation
- Improvements to current RADIAN implementation

Future work

- AI/ML solutions for generation of synthetic spatial data (*GeoPointGan*)
- **Placement Project:** Synthetic satellite imagery

GeoPointGAN: Synthetic Spatial Data with Local Label Differential Privacy

Teddy Cunningham* University of Warwick Coventry, UK teddy.cunningham@warwick.ac.uk

Hongkai Wen University of Warwick Coventry, UK hongkai.wen@warwick.ac.uk Konstantin Klemmer* University of Warwick Coventry, UK k.klemmer@warwick.ac.uk

Hakan Ferhatosmanoglu University of Warwick Coventry, UK hakan.f@warwick.ac.uk

Centre for Research Training

Ireland For what's next

Thank you!

GISRUK 2023 Paper

FUNDED BY

Skillnet

HOST INSTITUTIONS

