

Grazing detection in Ireland

A study using Deep Learning and Sentinel-1 time series

07 / 09 / 2023 Adriaan Keurhorst — Earth Observation Specialist - HubCAP

Context – Sentinel-1 and Sentinel-2

Sentinel-1

- A pair of radar satellites Sentinel-1A and Sentinel-1B
- Revisit time of 6 days
- Spatial resolution of 10 metres
- Advantage can see through clouds

• Sentinel-2

- A pair of optical satellites Sentinel-2A and Sentinel-2B
- Revisit time of 5 days
- Maximum spatial resolution of 10 metres
- Advantage lots of information stored in the spectral bands

https://sentinels.copernicus.eu/web/sentinel/missions

Context – Grazing

Intensive grazing vs. extensive grazing

Open Gate Rotational Grazing

Presentation structure

- 1. Problem statement
- 2. Data and methodology
- 3. Model design
- 4. Output
- 5. Results and statistics
- 6. Improvements

Problem statement – Has parcel X been grazed over the past year?

- Detect grazing using Sentinel-1
- Why Sentinel-1?
- Literature suggests coherence and backscatter data have potential
 - VV Coherence increases after grazing event
 - Backscatter increases after grazing event
- Challenges
 - Grazing is notoriously difficult to detect using Sentinel-1
 - Signal too noisy
 - Solution? Deep learning

Data

- Open-source platforms
 - Python
 - QGIS
 - Sen4CAP

- Signals Open source
 - Sentinel-1 time-series

- Labels
 - Daily grazing observations

Signals – how to retrieve them?

- Sen4CAP European Space Agency project to provide stakeholders with Sentinel-1 and Sentinel-2 derived information
- Open source
- Upload shapefiles of parcels
- Get a time-series for a given parcel
 - VV Coherence, VV Backscatter and VH backscatter

Signal and label data used

Signal data

- 2022 Sentinel-1A data between March 1st to November 30th
 - VV Coherence
 - VV Backscatter

 - VH Backscatter

 Ratio of VV_backscatter/VH_backscatter

 'inad Difference of backscatter

 0.4
 - Radar Vegetation Index

Label data

- 2022 daily grazing observations
 - Training: 72%
 - Validation: 8%
 - Testing: 20%

Workflow

Results

• Recap of objective: Has parcel X been grazed over the past year?

Grazing marker results	Stats	Testing set 1	Testing set 2	Test on both
Grazed	Precision	100%	92%	74%
	Recall	98%	74%	94%
	F-1	99%	81%	83%

Confusion matrices

Testing set 1		Predicted	
		Not grazed	Grazed
TRUE	Not grazed	1	0
	Grazed	1	60

Testing set 2		Predicted		
		Not grazed	Grazed	
TRUE	Not grazed	2		3
	Grazed	12		33

Testing on both		Predicted		
		Not grazed	Grazed	
TRUE	Not grazed	5	33	
	Grazed	6	94	

Digging deeper into the results

• Event level statistics – when did a grazing event take place?

Testing set 1	Stats	Testing set 1
Grazed	Precision	46%
	Recall	44%
	F-1	45%
Not grazed	Precision	79%
	Recall	81%
	F-1	80%

Testing set 1		Predicted		
		Not grazed	Grazed	
TRUE	Not grazed	794	192	
	Grazed	213	165	

Improvements to event level statistics

- Hyperparameter optimisation
- Increasing information from signals
- Creating a pre-marker grassland classification
- Including more training data

Increasing information from signals

- Feature selection
- Pixel based classification
- Deep learning to link Sentinel-1 backscatter values to NDVI
 - What is NDVI?
 - Sentinel-2 derived vegetation index
 - Why?
 - NDVI is best for grazing detection
 - How?
 - Sentinel-1 as input dataset
 - NDVI as target dataset
 - CNN to perform classification task

https://www.mdpi.com/2072-4292/11/12/1441 https://www.mdpi.com/2072-4292/14/11/2600

Creating pre-marker grassland classification

- Should the marker be picking up grazing in parcels where it's nearly impossible?
 - Mountainous areas?
 - Boggy areas?
- Grassland classification could be used to create weights to different types of pastures

Increasing amount of training data

- More training data typically yields better results
- Including more years in the training set
- Including weather events
 - Precipitation/drought affects radar signals
 - Precipitation/drought affects livestock going out to graze
- Increasing the spatial variability of training data
 - Location transferability typically low in ML/DL models

Issues

- Sentinel-1B is offline
 - 12-day temporal resolution what if grazing has occurred on the 13th day?
- Radar signal is very noisy
- Very difficult/impossible to detect 1 cow grazing a field